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Abstract. We establish level dynamics for finite matrices, employing a unified treatment of
real symmetric, complex Hermitian, quaternion real, unitary, and arbitrary complex matrices. In
all cases the level dynamics take the form of the classical Hamiltonian flow of some fictitious
many-particle systems. Equilibrium statistical mechanics of the latter leads to the well known
matrix ensembles of random-matrix theory. Ginibre’s ensemble, in particular, is thus associated
with level dynamics of arbitrary complex matrices.

1. Introduction

Level dynamics is the parametric motion of eigenvalues of finite matiicasich as
X(X) = Xo+ AYo. (1.1

The real parameter may be looked upon as the weight of a perturbatigof an ‘initial’ X.
If Hermitian, such matrices arise as Hamiltonians of quantum systems and level dynamics
is then just a fancy variant of perturbation theory for energy spectra.

Non-Hermitian matrices of the form (1.1) are encountered as generators of dissipative
guantum dynamics, for instance in master equatiopgdd= Xp for density operator®.
The complex eigenvalues of such generators have imaginary parts related to damping rates,
while the real parts would reduce to energy differences in the conservative limit. Another
application of non-Hermitian matrices is found in scattering theory: the complex poles of a
unitary scattering matrix can be identified with the eigenvalues of a non-Hernitiavith
real and imaginary parts specifying locations and widths of resonances.

As observed already by von Neumann and Wigner in their seminal paper [1], different
levels as a rule do not cross one another as a single control parameter suchasied.
That rule is ineffective when the matriX (A) commutes with some other matrix for all
A. The eigenvalues X then fall into different multiplets each of which is associated with
a single eigenvalue of. While within one multiplet crossings are still generically avoided,
levels from different multiplets are usually free to cross. Whegenerates the quantum-
mechanical time evolution of some dynamical system, the commutati%ityZ] = O
means thatZ is conserved. Such conservation laws are either related to symmetries or
to integrability of the corresponding classical time evolution. Barring such exceptional
cases, or confining ones attention to a single multiplet, one indeed encounters validity of
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the rule mentioned. To steer two levels to a degeneracy, one would have to control two or
more parameters, and this is the situation we assume throughout the present paper.

It is well known that the level dynamics of HermitiaM x N matrices of the form
(1.1) can be expressed as the classical Hamiltonian dynamics of a certain one-dimensional
N-particle system [2—4]. That fictitious gas hasas time and the real eigenvalues of
X as particle coordinates. The Hamilton functidhcomprises a kinetic term as well as
repulsive two-body interactions proportional to the inverse squared distance. Unusually,
we consider the coupling strengths of the inverse-square potentials, which are themselves
dynamical variables without analogues in real gases. Nevertheless, such many-body systems
have found favour in the mathematical literature due to their integrability, prior to their
independent discovery as an elegant formulation of level dynamics [5]. Alternatively,
instead of considering variable coupling strengths (built from matrix elements wof the
eigenbasis ofX), one can treat the eigenvectors Xfas additional phase-space variables.
The resulting dynamical equations, describing parametric motion of the eigenvalues,
their rates of change, as well as eigenvectors and their Hermitian conjugates, have also
Hamiltonian form, as observed by Nakamura and Lakshmanan [6]. Such systems were
investigated earlier from the point of their complete integrability [7].

The equivalence of level dynamics with a fictitious many-particle system becomes more
useful when the dependence of tNex N matrix X on the parameter is changed to [8]

X (L) = XgCOSA + YgSina. (1.2)

In contrast to the matrix in (1.1), the modified one has levels not flying apart indefinitely,
as the real parameterkeeps growing. For the associated fictitiMsparticle system, the
modification amounts to the addition of a harmonic binding term fovaparticles to the
Hamilton function’H. The modified gas is thus confined, notwithstanding the repulsive
interparticle interaction.

Upon application of equilibrium statistical mechanics to the many-particle system just
mentioned, one arrives at a statistical theory of spectra’of N matrices. The most
naive attempt at a statistical treatment of the gas in consideration employs the canonical
ensemble, i.e. the phase-space distribution(-e#f). For the eigenvalues of real symmetric
matricesX, this turns out to yield a joint probability density identical to that well known
from the Gaussian orthogonal ensemble (GOE) of random-matrix theory [9]; similarly, if
the matrices in (1.2) are complex Hermitian or quaternion real, the canonical ensemble
exp(—H) leads to the joint probability density of the Gaussian unitary ensemble (GUE) and
Gaussian symplectic ensemble (GSE), respectively. To further corroborate the relation of
random-matrix theory with equilibrium statistical mechanics of the many-body formulation
of level dynamics, proper account of the integrability of the latter must be taken: as a
consequence of the integrability, the phase-space point explores only a small sub-manifold
of the energy surface. The appropriate equilibrium ensemble must therefore include further
constants of the motion beyond just the enetgy4, 10, 11].

Our main objective in the present paper is to establish level dynamics for non-Hermitian
N x N matrices of the form (1.1) and (1.2). Such matrices may represent generators
of dissipative quantum dynamics [4] or, in another context, and after an appropriate
modification, describe properties of scattering systems [12, 13]. We shall meet again with an
equivalent classical HamiltoniaM-particle system, albeit one with the particles moving in a
two-dimensional plane rather than along a line. The gas of particles must be two-dimensional
simply because the eigenvalues of a non-HermiXaare complex. The Hamilton function
‘H encountered is real, positive and again includes, for the case (1.2), a harmonic confining
potential. The associated canonical distribution, (ex), turns out to yield the joint
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probability density of theV eigenvalues known from Ginibre’s ensemble of random-matrix
theory [14].

The conventional derivation of level dynamics of Hermitian matrices (1.1) or (1.2)
employs eigenvectory, (1)) and eigenvalueg, (1) of X (1): one differentiates

XM)NYn (D) = gu M) [ ¥ (1))

with respect tor and multiplies it with the adjoint eigenvectdt,, (A)|. The resulting set

of differential equations is revealed as a classical Hamiltonian flow for the fictitious gas
mentioned [4]. The conventional strateggnnotbe applied to arbitrary complex matrices

X (r). First, it can happen that such a matrix does not h&lveigenvectors—in fact, the
non-Hermitian generators of dissipative quantum dynamics are often of precisely this non-
diagonalizable type. However, even more importantly, the obtained flow cannot be written
as a Hamiltonian one withi@al Hamilton function. If the Hamilton function is complex, the
canonical ensemble cannot be sensibly constructed. The fact that a real Hamilton function
does not exist for the obtained dynamical equations is connected to the impossibility of
diagonalizing an arbitrary complex matrix by a unitary transformation—usually a general
complex similarity transformation is needed to achieve this goal.

The best that can be achieved for non-diagonalizable matrices by a unitary
transformation,U, is triangular form. The eigenvalues af then appear as the diagonal
elements(U~1XU),,; all elements(U~*XU),,, below the diagonal (i.e. the ones with
m > n) vanish, but thgU—1XU),,, with m < n do not.

In order to establish the level dynamics we have to employ a more powerful method than
the conventional one. First, the matrix motion (1.1) or (1.2) itself is revealed as classical
Hamiltonian in character, within a phase spa¢espanned by pairs of matricég§ Y. That
Hamiltonian structure is then shown to be invariant under unitary transformations. Noether's
theorem vyields constants of the motion which in turn specify a sub-manifald td which
the matrix dynamics (1.1) or (1.2) is actually restricted while still retaining Hamiltonian
character. (The situation is analogous to the motion of a particle in a spherically symmetric
potential; the conservation of angular momentum allows one to eliminate angular degrees of
freedom and to establish a Hamiltonian sub-dynamics for the radial coordinate.) Exploiting
the unitary invariance we choose the particular unitary transformdiipmwhich brings
about a triangulat/ ~1XU. The sub-manifold of¥/, to which the motion is confined, is
parametrized so as to include the element&§of XU (and thus in particular the eigenvalues
of X) among the coordinates. The change of coordinates in question is nonlinear, since
the triangularization ofX involves a unitary matriX, depending orX. It remains to find
the Hamilton function of the dynamics on the sub-manifold in question and the Poisson
brackets of the new coordinates.

Conventional calculus is not a suitable tool for the task just outlined, due to the nonlinear
change of coordinates, and the dimensioW?4of M. Exterior differentiation and the
theory of symplectic forms [15] finds a natural application here, and indeed renders all
our calculations easy. We shall not assume the reader to have much familiarity with these
techniques but rather develop the necessary machinery as we proceed.

More mathematical aspects of our investigation will be published elsewhere [16]. In
particular, we shall employ there the so-called momentum mapping, to reduce Hamiltonian
dynamics in a phase spagéé¢ to a sub-manifold, due to symmetry [17, 18].

The present paper is organized as follows. In section 2 we exhibit the conventional
construction of level dynamics for real symmetric matrices. As a build-up to our
principal objective, we reconstruct this well known theory from our more general setting
of Hamiltonian matrix dynamics. Exploiting the orthogonal invariance of the latter, we
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adopt an orthogonal transformation which not only triangularizes but actually diagonalizes
X (). It is for this elementary and familiar case that we introduce the mathematical
tools which become indispensable for arbitrary comp¥ein section 4. The intermediate
section 3 briefly reports the extension to complex Hermitian, quaternion real, and even
unitary matrices.

2. Level dynamics of real symmetric matrices

2.1. Elementary level dynamics

We propose consideration of dynamical equations for the eigenvalues of a real, symmetric
N x N matrix X undergoing the parametric motion

X(\) = Xo+ AYy

Xo= X} = X} Yo=Y =Y. (2.1)
Such equations can be obtained from the eigenvalue equation,

XY () = g [¥n (1)) (2.2)
where |¥,(A)),n = 1,..., N, are the orthonormalized eigenvectors ¥f and ¢, the

corresponding eigenvalues (energies). By differentiating (2.2) with respecti taking
matrix elements between the eigenvectpfs), we obtain a closed system of differential

equations for the quantities,, p, := (¥u|Yol V), andlu, := (¥ Yol V) (Gn — gm)

. dg,

qn = dn = Pn

. dpn —_9 lnklkn

Pr d)" k+#n (Qn - CIk)3

. dun < 1 1 )

lmn = = - lm l n - . 23
dx 2 Gn —a0?  (gn — q1)? 23)

k#m,n

The system (2.3) fully describes the fate of the eigenvalues when the paramefatitious

time, is changed. It takes a bit of ingenuity (see [2—4] for hints) to see that the system
(2.3) is a Hamiltonian one. Indeed, when we define the following Poisson brackets for the
phase-space variables, p,, andl,,, as

{Pm, Qn} == 8mn {[)m, pn} =0= {CIma Qn}
{lmnv Pz} =0= {lmns %}

{nns L7} = 5 Gmjlni + Snilmj — Snjlmi — Smilnj) (2.4)
the dynamical equations (2.3) turn out to be the Hamilton equations
Go=1{H. g} Pa={H.pa) L= (M, L} (2.5)
with the Hamilton function
H(q,p,l)=}2p2+}zl’%‘7”. (2.6)
267" 2 (gm — qn)?

One may consider the equations (2.3) or (2.5) as describing the time evolution of a
one-dimensional gas of particles, with positigpisand canonically conjugate momernig,
experiencing repulsive two-body interactions. A non-conventional feature of this fictitious
gas is that the coupling strengths, also undergo temporal changes according to the third
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equation of (2.3). It must be noted that the gas in question must expand indefinitely, due
to the interparticle repulsion and the lack of confining forces. Such expansion is in fact
obvious from the parametric motion (2.1) of the matkixi) = X + AYy: for Y generic,
the eigenvalues ok (1) behave roughly liken times the eigenvalues dfy, and thus fly
apart indefinitely as. — oc.

Not subject to such explosion are the levels of the real symmetric matrix

X (L) = Xgcosh + Ygsina. 2.7)

By analogy to the foregoing, this yields level dynamics with unchanged Poisson brackets,
but the Hamilton function

H(q. p,l)—zzpn qun 22

n#m (Qm - q”)z

differs from (2.6) by an added harmonic confining potential. The change from the unbound
parametric matrix motion (2.1) to the bounded one (2.7) can be understood as a non-
canonical transformation of the fictitious-particle dynamics involving-dependent re-
scaling of the coordinates, as well as a nonlinear re-parametrization of the. fih@].

The fictitious gas with the binding Hamilton function (2.8) offers a convenient starting
point for a statistical theory of the spectra of real symmetric matri€es The energy
surfaceH = constant is compact and yields a normalizable canonical phase-space density
p = exp(—H). By integratingp over the variableg, andl,,, we obtain a density of the
fictitious-particle coordinates, i.e. a joint density of the eigenvaluek,of

1
P(q1, g2, -+ qn) ~ exp( - (2 Z%?)) [Tla: —a;l- (2.9)

i<j

(2.8)

This is in fact the distribution known from the Gaussian orthogonal ensemble of random-
matrix theory [9], which appears here as a consequence of equilibrium statistical mechanics,
for an associated many-body system.

2.2. Hamiltonian matrix dynamics

We shall now re-derive the Hamiltonian form of level dynamics for real symmetric matrices,
using a different method which lends itself more easily to generalizations. The method
employs a certain symmetry inherent in the equation (2.1), or rather in its differential form
X=Y Y =0. (2.10)
It is known from elementary analytical mechanics that symmetries of dynamical equations
provide constants of the motion. For instance, rotational symmetry, as in a central-force
problem, entails the conservation of angular momentum. Such constants of the motion
enable us to reduce the number of degrees of freedom while preserving the Hamiltonian
nature of the reduced system. In the case of a particle experiencing a central force, we can
eliminate the angular degrees of freedom and reduce the Hamilton function to one depending
only on the radial variable. In the case in hand, (2.10), the symmetry is an invariance under
orthogonal transformations of the matricEsandY .

The system of differential equations (2.10) looks like free motion in the space of pairs of
real symmetric matricegX, Y). It is therefore suggestive to assemble the matrix elements
of the matricesX andY into canonically conjugate paifs;;, Y;;) with i < j of ‘positions’

X;; and ‘momenta’;;, and to define the Poisson brackets

(Yii, Xix} = Six { z;,sz}—* 51 fori <j, k<I
{ ljﬂYk[}:o:{Xijanl}' (2.11)
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As is easily checked we thus reproduce the free motion (2.10) as the Hamilton equations

Xi; = {H, X;j} Y = {H, Y} i,j=1,...,N (2.12)
with the Hamilton function
1 2 21
HZQZYHJFZYU = S (2.13)

i<j
To proceed, we need a slightly more abstract formulation of Hamiltonian mechanics.
We furnish the phase spadé (in the present example the differentiable manifold spanned
by pairs of real symmetric matricéX, Y)), with a differential 2-formw which in our case
reads

=Y d¥; A dX;+2) " dy; A dX; = tr@dy A dX). (2.14)
i i<j

As in the second member of the foregoing equation, we usually omit the indicas X
andY and indicate summations as the trace operation; in employing this shorthand we must
always keep in mind that only th&,;;, ¥;; with i < j are our independent variables, and
|dent|fy Xij = le‘.

In all cases to be considered, the symplectic 2-fasmwill be the exterior derivative,
o = da, of some 1-formx, the so-called symplectic potential; in the present example this
potential reads

@ = tr(Y dX). (2.15)

The symplectic formw can be used to define the Poisson brackets in a way which makes
coordinate changes aif easy to implement. It is also convenient to use trace notation for
a vector fieldZ with coefficientsZy and Zy

) 9
Z=tr(Zx > + 2y ). 2.16
(Xax+ Yay) (2.16)

The 1-form dF associated with a smooth functidh(X, Y) on M

oF oF
dF =tr| —— dX + - dY 2.17
d r<8X Ty ) 217
entails the following change of along Z
oF oF
2Z) = Zx—+Zy—]. 2.1
aF@) =t (2250 + 25 ) 219

If G is another smooth function oM, and d; its differential, we construct a 2-form
as dF A dg. Acting with the latter on a pair of vector field¥ and Z, one obtains the
function

(dF A dG)(X, Z): = dF(X)dG(Z) — dF(Z) dG(X) (2.19)

which is obviously antisymmetric in the functionsFdt), dG(Z) defined in (2.18). If
a pair of vector fields is to be acted upon by a linear combination of 2-forms such as
ZM,VAMd]-"M A dG, with smooth A4, F,, and G,, then both sides of (2.19) must be
correspondingly linearly combined.

The ‘Hamiltonian vector field'X’x of the smooth functioniF is defined by requiring
that the action of the symplectic 2-form on the pair of vector fieldstz and Z (with Z
arbitrary) as (2.19) gives the negative changeroélong Z

w(Xr, 2) = —dF(2). (2.20)
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Upon invoking the symplectic 2-forme from (2.14) we find, from the foregoing definitions
(2.18)—(2.20), the explicit expression

aF 0 B oF o )
Y 0X 09X aY
We are now fully equipped to define the Poisson bra¢ietG} of two functions by

letting the pair of associated Hamiltonian vector fields be acted upon by the symplectic
2-form

Xr = tr( (2.21)

{F, 0} = o(Xr, Xg). (2.22)

It is easy to check that this definition returns to the original Poisson brackets (2.11) when
we employ the particular symplectic 2-form (2.14). We should note, however, that (2.20)
and (2.22) make no explicit recourse to specific coordinatedforand that this is why
the slightly abstract formulation of Hamiltonian mechanics as a symplectic structur& on
makes changes of coordinates easy to implement.

One can now observe that the symplectic foem(2.14) (and hence also the Poisson
brackets (2.11)) as well as the Hamilton functitin(2.13) are invariant under orthogonal
transformations

(X,Y) — (0X07t ovo™ 00" =1 (2.23)

where the superscript T denotes matrix transposition. This symmetry under the@(dbp
comes with a constant of the motion

w(X,Y) =[Y, X]. (2.24)

The conservation of the commutator is easily check&dX] = [Yo, Xo+ AYo] = [Yo, Xo].

The relation of the conservation law to the symmetry (2.23) follows from Noether’s theorem:
let £ be a real antisymmetric matrix arda small number; an orthogonal matrix close

to the unit matrix can then be written & = exp(e£). For a Hamilton function to be
invariant under such a transformation it must satisfy

IH IH
tr (ax[é’ X1+ l6. Y]) =0 (2.25)

sincedX = €[&, X] and §Y = ¢[§, Y] are the infinitesimal changes brought about by the
transformationO in question. A generating functiof producing such coordinate changes
aséX = ¢€(0G/aY), 8Y = —e(8G/3X) is easily found by integrating as

G =1tré&fy, X]. (2.26)

The invariance ofH{ under the infinitesimal transformatio@ thus implies{H, G} = 0
and this in turn means thal is invariant under the canonical transformations generated
by the Hamilton functionH, i.e. thatG is conserved. Now, sincg is an arbitrary real
antisymmetric matrix we may choose it such that only two elements are non-vanishing,
& = éud;, and thus findG as uy = [Y, X]u; but this reasoning holds for all pairs of
indices (kl) and therefore the whole matrjx is conserved due to thé (N)-invariance of
our canonical structure.

We now propose to exploit thé (N)-invariance to change coordinates dh so as to
obtain the eigenvalues of the mattik among the new coordinates. To this end we choose
the particular orthogonal transformation (2.23) which diagonaliZes

07'x0 =diagq, ¢, . ... qn) =: 0. (2.27)
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Obviously the matrixO is not uniquely determined by the matrk Nevertheless, we can
always choose one matrix for eaghsuch that the following construction of coordinates is
correct.

We subject the matrice¥ and i to that same transformation and call the resulting
matrices

P:=07'v0 l:=0"uo. (2.28)

Needless to say, the so-adopt@ddepends onX such that we are now dealing with a
nonlinear change of coordinates. Another consequence oXtdependence 00 is that
the transforn? of u is not conserved.

In view of our goal, to rewrite our Hamiltonian dynamics (2.10) alias (2.12) in new
coordinates we consider the differential Xf With the help of the 1-form

W:=01do=-wT (2.29)
we get

dX =d(0Q0™YH =00 +[wW, 9ho L. (2.30)
We also need the differentialVd

dw =d(071d0) = -0"1d0O0* A dO =-W A W. (2.31)
We can now express our symplectic potensiaih the new coordinates

a = tr(Y dX) = tr(P(dQ + [W, Q])) = tr(P dQ) — tr(IW). (2.32)

As its differential we have the symplectic 2-form
w=da =tr[dP A dQ) — tr(dl A W) +tr((W A W)
= Ez:dpiA in+'22£:dh/ﬁ\“Gi

i<j

-2 Z Ui Wik A Wi + 1 Wiy A Wi + L Wi A W) (2.33)
i<j<k
where p; withi = 1,..., N are the diagonal elements of the mat®x and/;; are the

elements of the antisymmetric matrix

As new coordinates o we now chooseN functionsg;, N functions p;, N(N —
1)/2 elements of the antisymmetric matrix and N(N — 1)/2 independent coordinates
parametrizing the orthogonal matrix. A short calculation expresses the Hamilton function

H=3try?=3tro'r?o (2.34)

in terms of the new coordinates. Not surprisingly, we find exactly the Hamilton function
of level dynamics (2.6). Moreover, upon using (2.20), (2.22), and (2.33) we derive the
Poisson brackets in the new variables and recover those previously given in (2.4). We
could proceed to calculate the Poisson brackets involving the remaining new phase-space
variables, i.e. those characterizing the orthogonal mafrix However, we refrain from
doing this, because the Poisson brackets (2.4) forzihe;, l;; close among themselves,
and the Hamilton function does not involve these additional variables either. We can now
enjoy an important benefit of the orthogonal symmetry of our matrix dynamics, i.e. the
possibility of reducing the number of degrees of freedom, while preserving the Hamiltonian
character.

The foregoing considerations carry over immediately to real symmetric matrices of the
form (2.7), i.e.X = Xpcosi+ Ygsini. Instead of the matrix dynamics (2.10) we now have

X=Y Y = —X. (2.35)



Level dynamics for quantum systems 8643

This is Hamiltonian in character with the Poisson brackets (2.11) but with the Hamilton
function (2.13) replaced by
1 1
H= Y X5+ YD)+ 5 3 (XD + ¥ = (x> + Y2, (2.36)
i i<j

Again there is symmetry under orthogonal transformations. Simply repeating the above
analysis and by changing coordinates, we project the motion onto the smaller manifold
spanned by the, p, ! and there recover Hamiltonian dynamics according to the fictitious

gas Hamilton function (2.8), which includes a harmonic binding potential.

3. Level dynamics for Hermitian and unitary matrices

When extending the above arguments for Hamiltonian matrix dynamics to Hermitian
N x N matrices or quaternion realN2x 2N matrices of the structur& = X + AYy
or X = Xpcosa + Ypsini, we encounter few changes. Noteworthy is the replacement of
the orthogonal symmetr@ (N), by the unitary ond/(N) and the symplectic onSp(N),
respectively. Consequently, the Poisson algebras of; ttere related to the corresponding
Lie algebrasu(N) and sp(N) rather than to the algebra(N) incurred in the previous
section. Moreover, the matrix dynamics with binding potentials naturally lead to the joint
distribution of eigenvalues of the Gaussian unitary and symplectic ensembles of random-
matrix theory [9, 4].

Even the level dynamics of unitary Floquet matrices of periodically kicked quantum
systems (see [4]) can be cast into the form of Hamiltonian matrix dynamics. Such Floquet
matrices have the structure

F = exp(—iAV) Fy (3.1)

with V Hermitian andFp unitary, both of dimensionV, and . once more a real control
parameter. Of interest is the fate of the eigenphases upon vaxying

In order to reveal thei-dependence of Floquet matrices of the form (3.1) as a
Hamiltonian flow we introduce a phase spavk spanned by pairs oN x N matrices
(F, V) with F unitary andV Hermitian, or, equivalently, by pair&X, Y) defined as

X=F Y =iFtv. (3.2

For systems which enjoy a time reversal symm@try.e. T FT~! = F with an anti-unitary

T, the Floquet matrix (3.1) is symmetrid"(= FT), in the T-invariant basis and can be
diagonalized by an orthogonal matrix [4]. In this case we define the symplectic structure
using the real form

o =tr(dY A dX) (3.3)
and this together with the Hamilton function

H = —1tr(XY)? (3.4)
leads to the dynamical equations

X =—-XYX Y =YXY. (3.5)

These Hamiltonian equations obey the conservation = constant= XYy, and hence
the solution

X = exp(—rXoYo) Xo. (3.6)
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The latter is indeed, according to (3.2), the original unitary mafrix) in (3.1). Proceeding
from here on as above, and exploiting the invariance of the Hamiltonian matrix dynamics,
under orthogonal transformations we reduce the dynamics to the sub-maniidlégpénned

by the fewer variables,, p, andl,,, which in the case of the orthogonal symmetry class
obey the Poisson algebra (2.4) (wh&N) or Sp(N) is the reigning symmetry group we
must modify the symplectic structure accordingly and then the Poisson bracketsigj the
come out as related to the corresponding Lie algeb(as or sp(N)). The newg, are the
eigenphases of the Floquet matiix while the canonically conjugate momenta are the
diagonal elements of the matrix

v=0"VO0. (3.7)
This is the original Hermitian matri¥ rotated by the matribO which diagonalizes as
OTFO =exp(—-iQ)  Q =diagq1, g2, .-, qn) (3.8)
and the real antisymmetric matrixis given by
[ =i(exp(iQ)vexp(—iQ) — v). (3.9
The Hamilton function (3. 4) written in the coordinat@a pu, andi,,, reads
H(g,p,1) = py+ (3.10)
2 Z 8, ,,,Z,,#m sm2<(qm an/2)
This leads to dynamical equations analogous to (2.3)
dg,
an
dpy 1 cos((g, — qx)/2)
= Vlklkil.—
da 4 ; Sin*((ga — q4)/2)
dl,,,,, 1 1
= Z Lt ( : - ) . (3.11)
4.5, S ((gm — q1)/2)  SIP((gn — q1)/2)

These Hamiltonian equations have previously been derived [4] by the more elementary
method outlined in section 2.1. They obviously allow for an interpretation as the dynamics
of a fictitious N-particle system. The equilibrium statistical mechanics of that many-body
system has been shown to entail the statistics of the eigenphgasesll known from
Dyson’s circular ensembles of random-matrix theory [4, 10, 11].

The special cases of constdpt in the Hamilton functions (2.6) and (3.10) give rise to
the known Calogero—Moser and Sutherland—Moser systems [19-21]. It is interesting that
the quantumversions of these Hamiltonians can also be associated with universal statistical
spectral properties of quantum chaotic systems. It was shown by Siet@ig22] how
guantum Calogero and Sutherland Hamiltonians appear in limith\g+{ oo) versions of
certain field-theoretical matrix models, which, on the other hand, lead to random matrix
theory via the so-called nonlinear, supersymmeirimodel [23, 24].

4. Level dynamics of complex matrices

4.1. Parametric motion of complex matrices as a real Hamiltonian flow

We now extend the techniques explained above to parametric motion in the space of complex
matrices. Admitting comple¥ x N matrices,X andY and a real parameter we consider
the motion

X(A) = Xo+AY (4.1)
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as a flow on the ®2-dimensional complex phase spade parametrized by pairs of matrices
(X, Y). Alternatively and equivalently, the flow (4.1) can be written as a real one: instead
of pairs of complex matricesX, Y), we may choose quadruples of real ones, through
X=XD4iXx@ y=vD 4iy@ with X, Y@, 4 = 1, 2; the phase space is then a
4N?-dimensional real manifold.

To reveal the Hamiltonian nature of the motion we introduce ‘natural’ Poisson brackets

Y0 X =dwoudy (YO v P =1X0. X1 =0 (4.2)
and a real positive Hamilton function
1 1
H= ftrYYT Z(Y@)2 Z(Yij?))? (4.3)

i
The Hamilton equations read

XW=Hx =y VO =My = (4.4)

Combining these to the complex equatiokis= Y,Y = 0 and integrating, we indeed
recover the original flow (4.1). Needless to say, we could have stayed with complex
matrices throughout and employed their Poisson brackets

{Yij, X5} = 288, {Yij, X} = {Yij, Yu} =Yy, Y5 = (X, X} = {Xij, X;;} =0
(4.5)

From here on, we shall most often use the more compact formulation in terms of complex
matrices.

In preparation of the envisaged change of coordinates, we equip the phase\sdice
pairs of complex matrices with the symplectic forms

o = Retny dx¥) o = da = Retrdy A dx) (4.6)

or, in terms of real matrices,
o=YrPdx? + Z vPdx?  w=3dr® A x4+ Z dr? A dx2.
—

ij
4.7)

We can now introduce Poisson brackets without reference to specific phase-space
coordinates via the standard procedure. Let us recall from section 2 that one employs
an arbitrary vector fieldZ, on M, and associates a Hamiltonian vector fidlg, with an
arbitrary smooth functior?, throughw (Xr, Z2) = —dF(Z). The Poisson bracket of two
functions F and G is then defined a$F, G} = w(Xr, Xg). These, of course, imply the
above brackets (4.2) or (4.5), by means of a straightforward calculation.

4.2. Invariance under the unitary group

The symplectic structure just introduced is symmetric under the following action of the
unitary groupU (N)

(X,Y) — (UXUt,uyuh vut =1. (4.8)

This invariance is indeed easy to check for the symplectic foramd the Hamilton function
(4.3); the invariance of the Poisson brackets (4.2) or (4.5) follows from that oAs in
the previous section, we find the constants of the motion

w(X,Y): =1y, X+ [r", XD (4.9)
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to be related to the symmetry in question through Noether's theorem. Moreover, we can
exploit the invariance unddy (N) to introduce new coordinates @i so as to include the
eigenvalues of the matriX as a subset and thus exhibit level dynamics.

4.3. ‘Rotating-frame’ coordinates

It is not possible to diagonalize an arbitrary complex mafixvith the help of a unitary
transformation. Fortunately, we need not diagonalfz@.) to explore its eigenvalues. It
suffices to bringX (1) into upper-triangular form and that can indeed be achieved (see [25])
by a unitary transformation

Z:=U'XU Zij=0 fori > j (4.10)

the diagonal elementg;; are the eigenvalues df. The same transformation performed on
the matricesY and u

P:=U'YU I:=U'n(X,V)U = 3(P, Z1 + [P, 2]) (4.11)

yields (in general, full) complex matrice® and!.

Just as in the previous exampleés,= UZU ! is not a unique parametrization of the
matrix X. If U transformsX to the upper-triangular form (4.10) with the eigenvaluesof
on the diagonal of the matrix, thenUT with T, an arbitrary diagonal unitary matrix, does
the same. We may thus impoge suitable constraints oy so as to be left withv? — N
independent real parameterstih For instance, we could writ&/ = exp[i)_, x,T,] with
the sum running over all non-diagon&@l(N) generators,. The realN? — N coefficients
x, would be the coordinates uniquely specifying our triangularizing mdifrix

We now consider the differential of,

dx =dwzuh =uv@z +[w, Z)U". (4.12)
Here, W is the 1-form
W:=U"dU = —w". (4.13)
From (4.13), and the unitarity df, we obtain
dW = d(UTdU) = —UTdUUT A dU = =W A W. (4.14)

Hence, our symplectic potentialand the symplectic forrm can be written in the ‘rotating
coordinate frame’ as

o = RetY dX') = Ret(P(dZ' +[ZT, W'])) = Retn P dZ") — tr(W)
w =da = RetdP A dZ) —tr(dl A W) +trdW A W). (4.15)

To replace the parametrization of the maniféfdby pairs of complex matrice¥, Y we
now specify new coordinates: the triangular matdxthe upper-triangular part aP, i.e.
the set of element®;; with i < j, the off-diagonal elements of the (anti-Hermitian) matrix
I and the unitary matrix/. We thus haveN (N + 1) real variables R€;;, Im Z;; with
i < j, N(N +1) real variables R&;;, Im P;; with i < j, N(N — 1) real variables Rg;,
ImZ;, with i < j (remember that; = —I7;) and N (N — 1) real variables parametrizing the
triangularizing matrixtU. As in the original frame we encounteW4 real variables. The
transformation to rotating coordinates is generically non-singular. To fully implement it, we
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must eliminate the variableB;; with i > j in favour of the variableg;; with the help of
the definition in (4.11). Writing out,, for m < n and usingZ;; = 0 fori > j, we obtain

2lmn = Z Pme:k - Z Z;:m Pkn + Z Pk*mZkﬂ - Z kaP:k

k>n k<m k<n k>m
= ZuPuk = Y ZinPin+ Y Zin Pl — Y Zui P
k>n k<m k<m k>=n
+ Y ZPh = Y ZuPj (4.16)
n=k>m n>k>m

We may solve these equations 8y, with m > n and thus obtain the elements of the
lower-triangular part ofP as linear combinations of thi; with i < j and theP;; with
i <.

We shall need the Jacobiah(or rather the dependence of its absolute value&Zgi of
the transformation from the variables (Rg,, Im P,,,, m > n) to the variables (Rg,,,
Iml,,m, m # n), or, what is equivalent up to a constant, of the transformation from
(Pyn, P}, m > n) 10 (Iy,, I}, m > n). To construct/ we deduce from (4.16) fon < n

Zlmn = Z an Pkm Z kaP
nzk>m n>k>m
= (Znn - me)Pn*m + Z (an Pk*m - mkP k) + - (417)
n>k>m
where the dots refer to terms independentRpf, Pj with i > j and thus incapable of
contributing to the Jacobian. Obviously, then, the with m < n do not depend on the
P;; with i > j but only on their conjugate®;;; hence the absolute value of the Jacobian
J equals the squared modulus of the Jacoblarmf the transformation (4.17). Now, for
n = m + 1, we have only one term on the right-hand side of (4.17) which contributes the
factor (Z,+1.m+1 — Zmm) 10 J1. We can expand; with respect to the rows containing only
one element of this form. In the reduced determinant there are once more rows containing
only one element corresponding io= m + 2; thus by continuing this procedure we arrive
at J, = ]_[i<j(Z_,-_,~ — Z;;) and consequently

I7=T11z;; - zal. (4.18)
i<j
It is worth noting that the Jacobiah depends only on the diagonal elemeds, i.e. the
eigenvalues oX (and their complex conjugates).
With the help of the symplectic form (4.15) we can calculate the Poisson brackets for
the new coordinates. To this end we first introduce the lattes as

1
0= Z(dP A dZj + dPj A dZ;j) 4+ tr(dl A W) —trdW A W). (4.19)
i<j
Mere inspection reveals the Poisson bracket betweéemd P to be canonical,
{P ijs ZZ1}=25ik5jl { U’Zkl}_{zlj’zkl}—{ U’Pk*l}zo (420)

and the Poisson brackets 8f; and Z;; with /; and Uy to vanish. Moreover, the Poisson
brackets for thd;; do not depend on th&};, in analogy to the situation encountered in
section 2.2. Indeed, leF, G be two functions depending on the componentd ohly

and Xz, X the corresponding Hamiltonian vector fields calculated according to (2.20). A
straightforward calculation (see the appendix) shows that

AF\" [3G\T
70— o0 ([ (). (2)]) a2
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whered F/dl is the matrix with the elementsF /d;; etc. In particular, for thé; themselves
we obtain the brackets related to the Lie algelr@y)

{lpq’ lmn} = lpn(smq - lmqspn- (422)
In order to express the Hamilton function (4.3) in the new coordinates we start from

ron _ L ho_ L 2 12
H(Z, P, 1) = Str(PP) = 2{;|P,,| +;|P,j| } (4.23)
and here think of theP;; with i > j as expressed in terms of tl&;, the off-diagonal
elements ofl/ and the upper-triangular part of (which are denoted by’ and P/,
respectively). Together with the Poisson brackets (4.20) and (4.22), this Hamilton function
yields the equations of motion for the variablgs P’ and!’. Since’ does not depend

on U, it is obvious that the latter variables obey a closed system of dynamical equations.
Similar to our procedure in section 2, we have thus achieved the desired projection of the
original matrix dynamics onto a Hamiltonian system of smaller dimension, such that the
levels of the complex matri¥X (1) span a part of the reduced manifold.

The reduced Hamiltonian dynamics arrived at, generalizes the previously known level
dynamics to that of complex matrices. It may be looked upon as the dynamics of a ‘gas’
of fictitious particles moving in two spatial dimensions and we shall, in fact, dwell on
that analogy below. Like the one-dimensional fictitious gases associated with Hermitian
and unitary matrices in sections 1 and 2 the many-body system now encountered is an
integrable one. The integrability is a trivial consequence of that of the original matrix
flow (4.1). Needless to say, if we restrict the matricésy in (4.1) to real symmetric
ones, the new many-body system reduces to the corresponding one of section 2: the upper-
triangular matrixZ becomes diagonal, the matriX real symmetric, and the matrixreal
antisymmetric with (4.17) specialized to the fouiy), = P..(Z., — Zum), familiar from
section 2, apart from its notation.

4.4, Re-scaled levels and Ginibre’s ensemble

The eigenvalueg;; of the complex matrixX = Xo+ AY tend to move apart indefinitely in
the complex plane as the real parametdeeps growing. We therefore shift our attention
to a matrix dynamics with bounded motion of the eigenvalues and return to (2.7) and (2.35)

X=Y Y =-X & X = XoCOSk + Ygsini (4.24)

but now with complexVN x N matrices. That matrix flow is generated by the Hamilton
function

H = 1tr(xXx" + Jtr(yyh) (4.25)

or, written in real variables,

() R () e ) 32 () (429

This differs from the original Hamilton function (4.3)) by the inclusion of a harmonic
binding potential. That potential preserves the unitary symmetry of the system and hence
all previous considerations remain valid. In the new coordinates the Hamilton function
(4.23) acquires a binding term as well and takes the form

H(Z, P',1") = 3tr(zZ") + Ltr(P PT). (4.27)
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Now that the motion of the eigenvalues in the complex plane is bounded in character,
we have reached, as in section 1 for real symmetric matrices, a good basis for a statistical
theory of spectra for complex matrices. Thinking of the level dynamics as the motion of
a many-body system and imagining that system in thermal equilibrium, we employ the
canonical phase-space density

p(Z, P, Iy ~exp(—H(Z, P, 1")

1 5 1 I ) 1 ;
= exp( =52 1Zul |exp( =5 D 1Zwl®)exp( —5u(PPY ).
(4.28)

Since the manifoldH = constant is compact, this canonical density is normalizable. Of
course, we must, as previously, imagine the elements from the lower-triangular pRrt of
expressed by appropriate elementd,af and the upper-triangular part &. The reduced
distribution of the eigenvalues is obtained by integratj, P’,!’) over the variables
I'P',andZ;;,i < j, i.e. all variables except the eigenvalugs

N N
P({Z”}) ~ f p(Z, P,, l/) 1_[ dZZ,'j dZPij dzlij l_[ dZPI'i (429)

i<j i

where dx : = dRex dimx. The integration overd;;,i < j, involves only Gaussian factors
stemming from tK X' in the exponential. The integrals over the remaining variables are
also reduced to Gaussian ones over(@xpP"), if we change back from the variablgs P’

to P. Taking into account the Jacobian (4.18) we obtain

N
P{Z;;}) ~ exp( - Z |Zii|2> l_[ |Zii — Z;; |2 (4.30)

i<j

which is well known as the joint density of eigenvalues of Ginibre’'s ensemble [14] of
random complex matrices.
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Appendix. Poisson brackets

We derive here the Poisson brackets (4.21), related to the symmetry gr@up A similar
calculation would yield the corresponding brackets in (2.4) for the gro@y). In fact,
the construction is based on a general principle which follows from the equivariance of the
moment map and the existence of the canonical Poisson structure on the algebra in question.
The reader will appreciate the power of exterior differential forms as a bookkeeping device in
changes of coordinates on some manifold. To do this kind of calculation using conventional
calculus would be possible, in principle, but considerably more cumbersome.

The first step is to construct the Hamiltonian vector fieltt associated with a
smooth function 7(/), which depends only on thé; and thus has the differential
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dF = tr(dF/al) di". The change ofF, along an arbitrary vector field, therefore involves
only the component€® of Z along thel and reads

T
dF(2) =trz® (‘ZE) ) (A.1)

We now recall the definition (2.20) of a Hamiltonian vector fiedld X'z, Z) = —dF(2),
and invoke the symplectic form (4.19). SincedijXr, Z) is bilinear in the components of
Xz and Z, (ii) dF(2) involves only thel-componentsz® of Z, and (iii) » has no cross
terms between theZ4]; and the ¢, nor between the B; and the d@;, the Hamiltonian
vector field Xz in search can neither hav& nor P-components; possible only ateand
U-components. We thus get

w(Xr, Z) = —tr (dl A dW — IW A W)(Xr, 2)

9 T
= —tr(@d A dW —IW A W)<ter:(l) <al>

T T T
rra® (L) wzo (L) pezo (L)), (A2)
U al U

Upon invoking the definition (2.19) of the action of a 2-form on a pair of vector fields we
proceed to

o(Xr, 2) = —tr (XU — 10T XUt + UT X0 20 +truta, 0 z0

.
= —dF(Z) = —trz? (aaf) ) (A.3)

We compare here the coefficients Bf) and 2’ and obtain the desired vector field,

w2 () s

The Poisson bracket between two functidhg) andG (/) is then accessible through the
general definition (2.22), i.e. by letting the symplectic foénact on the pair of associated
Hamiltonian vector fieldstz and X;. We simply repeat the foregoing calculation with
replaced byX; and recover the result announced in (4.21)

T T
(F. G} = w(Xr, Xg) = —tr(l[ (‘Z) , (‘5) ]) (A.5)

[1] von Neumann J and Wigné& P 1929Phys. Z.30 467

[2] Pechukas P 198Bhys. Rev. Letts1 943

[3] Yukawa T 1985Phys. Rev. Lett4 1883

Yukawa T 1986Phys. Lett.116A 227

[4] Haake F 1991Quantum Signatures of Cha@Berlin: Springer)

[5] Wojciechowski S 1983hys. Lett.111A 101

[6] Nakamura K and Lakshmanan M 1986iys. Rev. Lett57 1661

[7] Gibbons J and Hermsen T 19&hysicallD 337

[8] Haake F and Lenz G 199Burophys. Lett13 577

[9] Mehta M L 1991 Random Matrice§Boston, MA: Academic)
[10] Dietz B and Haake F 198Burophys. Lett9 1
[11] Dietz B 1994Z. Phys.B 96 271
[12] Fyodoror Y V and Sommes H J 1997]. Math. Phys38 1918
[13] Fyodorov Y V, Khoruzhen& B A and Sommes H J 1997Phys. Rev. Let{r9 557

References



(14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
(23]
[24]
[25]

Level dynamics for quantum systems 8651

Ginibre J 1965). Math. Phys6 440

Flanders H 196differential Forms(New York: Academic)

Zaitsev D, Huckleberry A, K& M and Haake F 1997 to be published

Abraham R and Marsden J 19F®undations of Mechanicgvienio Park, CA: Benjamin-Cummings)
Arnold V | 1980 Mathematical Methods of Classical Mechan{&erlin: Springer)

Calogero F 1969. Math. Phys10 2191

Sutherland B 1971. Math. Phys12 246

Moser J 197%Adv. Math.16 1

Simons B D, Le P A and Altshuler B 199Phys. Rev. Letf72 64

Efetov K B 1983 Adv. Phys32 53

Simors B D and Altshuler B 199%hys. RevB 48 5422

Horm R A and Johnso C R 1986Matrix Analysis(Cambridge: Cambridge University Press)



