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Abstract. We establish level dynamics for finite matrices, employing a unified treatment of
real symmetric, complex Hermitian, quaternion real, unitary, and arbitrary complex matrices. In
all cases the level dynamics take the form of the classical Hamiltonian flow of some fictitious
many-particle systems. Equilibrium statistical mechanics of the latter leads to the well known
matrix ensembles of random-matrix theory. Ginibre’s ensemble, in particular, is thus associated
with level dynamics of arbitrary complex matrices.

1. Introduction

Level dynamics is the parametric motion of eigenvalues of finite matricesX such as

X(λ) = X0+ λY0. (1.1)

The real parameterλmay be looked upon as the weight of a perturbationY0 of an ‘initial’ X0.
If Hermitian, such matrices arise as Hamiltonians of quantum systems and level dynamics
is then just a fancy variant of perturbation theory for energy spectra.

Non-Hermitian matrices of the form (1.1) are encountered as generators of dissipative
quantum dynamics, for instance in master equations idρ/dt = Xρ for density operatorsρ.
The complex eigenvalues of such generators have imaginary parts related to damping rates,
while the real parts would reduce to energy differences in the conservative limit. Another
application of non-Hermitian matrices is found in scattering theory: the complex poles of a
unitary scattering matrix can be identified with the eigenvalues of a non-HermitianX, with
real and imaginary parts specifying locations and widths of resonances.

As observed already by von Neumann and Wigner in their seminal paper [1], different
levels as a rule do not cross one another as a single control parameter such asλ is varied.
That rule is ineffective when the matrixX(λ) commutes with some other matrixZ for all
λ. The eigenvalues ofX then fall into different multiplets each of which is associated with
a single eigenvalue ofZ. While within one multiplet crossings are still generically avoided,
levels from different multiplets are usually free to cross. WhenX generates the quantum-
mechanical time evolution of some dynamical system, the commutativity [X,Z] = 0
means thatZ is conserved. Such conservation laws are either related to symmetries or
to integrability of the corresponding classical time evolution. Barring such exceptional
cases, or confining ones attention to a single multiplet, one indeed encounters validity of
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the rule mentioned. To steer two levels to a degeneracy, one would have to control two or
more parameters, and this is the situation we assume throughout the present paper.

It is well known that the level dynamics of HermitianN × N matrices of the form
(1.1) can be expressed as the classical Hamiltonian dynamics of a certain one-dimensional
N -particle system [2–4]. That fictitious gas hasλ as time and the real eigenvalues of
X as particle coordinates. The Hamilton functionH comprises a kinetic term as well as
repulsive two-body interactions proportional to the inverse squared distance. Unusually,
we consider the coupling strengths of the inverse-square potentials, which are themselves
dynamical variables without analogues in real gases. Nevertheless, such many-body systems
have found favour in the mathematical literature due to their integrability, prior to their
independent discovery as an elegant formulation of level dynamics [5]. Alternatively,
instead of considering variable coupling strengths (built from matrix elements ofY0 in the
eigenbasis ofX), one can treat the eigenvectors ofX as additional phase-space variables.
The resulting dynamical equations, describing parametric motion of the eigenvalues,
their rates of change, as well as eigenvectors and their Hermitian conjugates, have also
Hamiltonian form, as observed by Nakamura and Lakshmanan [6]. Such systems were
investigated earlier from the point of their complete integrability [7].

The equivalence of level dynamics with a fictitious many-particle system becomes more
useful when the dependence of theN ×N matrixX on the parameter is changed to [8]

X(λ) = X0 cosλ+ Y0 sinλ. (1.2)

In contrast to the matrix in (1.1), the modified one has levels not flying apart indefinitely,
as the real parameterλ keeps growing. For the associated fictitiousN -particle system, the
modification amounts to the addition of a harmonic binding term for allN particles to the
Hamilton functionH. The modified gas is thus confined, notwithstanding the repulsive
interparticle interaction.

Upon application of equilibrium statistical mechanics to the many-particle system just
mentioned, one arrives at a statistical theory of spectra ofN × N matrices. The most
naive attempt at a statistical treatment of the gas in consideration employs the canonical
ensemble, i.e. the phase-space distribution exp(−H). For the eigenvalues of real symmetric
matricesX, this turns out to yield a joint probability density identical to that well known
from the Gaussian orthogonal ensemble (GOE) of random-matrix theory [9]; similarly, if
the matrices in (1.2) are complex Hermitian or quaternion real, the canonical ensemble
exp(−H) leads to the joint probability density of the Gaussian unitary ensemble (GUE) and
Gaussian symplectic ensemble (GSE), respectively. To further corroborate the relation of
random-matrix theory with equilibrium statistical mechanics of the many-body formulation
of level dynamics, proper account of the integrability of the latter must be taken: as a
consequence of the integrability, the phase-space point explores only a small sub-manifold
of the energy surface. The appropriate equilibrium ensemble must therefore include further
constants of the motion beyond just the energyH [4, 10, 11].

Our main objective in the present paper is to establish level dynamics for non-Hermitian
N × N matrices of the form (1.1) and (1.2). Such matrices may represent generators
of dissipative quantum dynamics [4] or, in another context, and after an appropriate
modification, describe properties of scattering systems [12, 13]. We shall meet again with an
equivalent classical HamiltonianN -particle system, albeit one with the particles moving in a
two-dimensional plane rather than along a line. The gas of particles must be two-dimensional
simply because the eigenvalues of a non-HermitianX are complex. The Hamilton function
H encountered is real, positive and again includes, for the case (1.2), a harmonic confining
potential. The associated canonical distribution, exp(−H), turns out to yield the joint
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probability density of theN eigenvalues known from Ginibre’s ensemble of random-matrix
theory [14].

The conventional derivation of level dynamics of Hermitian matrices (1.1) or (1.2)
employs eigenvectors|ψn(λ)〉 and eigenvaluesqn(λ) of X(λ): one differentiates

X(λ)|ψn(λ)〉 = qn(λ)|ψn(λ)〉
with respect toλ and multiplies it with the adjoint eigenvector〈ψm(λ)|. The resulting set
of differential equations is revealed as a classical Hamiltonian flow for the fictitious gas
mentioned [4]. The conventional strategycannotbe applied to arbitrary complex matrices
X(λ). First, it can happen that such a matrix does not haveN eigenvectors—in fact, the
non-Hermitian generators of dissipative quantum dynamics are often of precisely this non-
diagonalizable type. However, even more importantly, the obtained flow cannot be written
as a Hamiltonian one with areal Hamilton function. If the Hamilton function is complex, the
canonical ensemble cannot be sensibly constructed. The fact that a real Hamilton function
does not exist for the obtained dynamical equations is connected to the impossibility of
diagonalizing an arbitrary complex matrix by a unitary transformation—usually a general
complex similarity transformation is needed to achieve this goal.

The best that can be achieved for non-diagonalizable matrices by a unitary
transformation,U , is triangular form. The eigenvalues ofX then appear as the diagonal
elements(U−1XU)nn; all elements(U−1XU)mn below the diagonal (i.e. the ones with
m > n) vanish, but the(U−1XU)mn with m < n do not.

In order to establish the level dynamics we have to employ a more powerful method than
the conventional one. First, the matrix motion (1.1) or (1.2) itself is revealed as classical
Hamiltonian in character, within a phase spaceM, spanned by pairs of matricesX, Y . That
Hamiltonian structure is then shown to be invariant under unitary transformations. Noether’s
theorem yields constants of the motion which in turn specify a sub-manifold ofM to which
the matrix dynamics (1.1) or (1.2) is actually restricted while still retaining Hamiltonian
character. (The situation is analogous to the motion of a particle in a spherically symmetric
potential; the conservation of angular momentum allows one to eliminate angular degrees of
freedom and to establish a Hamiltonian sub-dynamics for the radial coordinate.) Exploiting
the unitary invariance we choose the particular unitary transformationU , which brings
about a triangularU−1XU . The sub-manifold ofM, to which the motion is confined, is
parametrized so as to include the elements ofU−1XU (and thus in particular the eigenvalues
of X) among the coordinates. The change of coordinates in question is nonlinear, since
the triangularization ofX involves a unitary matrixU , depending onX. It remains to find
the Hamilton function of the dynamics on the sub-manifold in question and the Poisson
brackets of the new coordinates.

Conventional calculus is not a suitable tool for the task just outlined, due to the nonlinear
change of coordinates, and the dimension 4N2 of M. Exterior differentiation and the
theory of symplectic forms [15] finds a natural application here, and indeed renders all
our calculations easy. We shall not assume the reader to have much familiarity with these
techniques but rather develop the necessary machinery as we proceed.

More mathematical aspects of our investigation will be published elsewhere [16]. In
particular, we shall employ there the so-called momentum mapping, to reduce Hamiltonian
dynamics in a phase spaceM to a sub-manifold, due to symmetry [17, 18].

The present paper is organized as follows. In section 2 we exhibit the conventional
construction of level dynamics for real symmetric matrices. As a build-up to our
principal objective, we reconstruct this well known theory from our more general setting
of Hamiltonian matrix dynamics. Exploiting the orthogonal invariance of the latter, we
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adopt an orthogonal transformation which not only triangularizes but actually diagonalizes
X(λ). It is for this elementary and familiar case that we introduce the mathematical
tools which become indispensable for arbitrary complexX in section 4. The intermediate
section 3 briefly reports the extension to complex Hermitian, quaternion real, and even
unitary matrices.

2. Level dynamics of real symmetric matrices

2.1. Elementary level dynamics

We propose consideration of dynamical equations for the eigenvalues of a real, symmetric
N ×N matrixX undergoing the parametric motion

X(λ) = X0+ λY0

X0 = XT
0 = X†0 Y0 = Y T

0 = Y †0 . (2.1)

Such equations can be obtained from the eigenvalue equation,X

X|ψn(λ)〉 = qn(λ)|ψn(λ)〉 (2.2)

where |ψn(λ)〉, n = 1, . . . , N , are the orthonormalized eigenvectors ofX and qn the
corresponding eigenvalues (energies). By differentiating (2.2) with respect toλ and taking
matrix elements between the eigenvectors|ψn〉, we obtain a closed system of differential
equations for the quantitiesqn, pn := 〈ψn|Y0|ψn〉, andlmn := 〈ψm|Y0|ψn〉(qn − qm)

q̇n = dqn
dλ
= pn

ṗn = dpn
dλ
= −2

∑
k 6=n

lnklkn

(qn − qk)3

l̇mn = dlmn
dλ
= −

∑
k 6=m,n

lmklkn

(
1

(qm − qk)2 −
1

(qn − qk)2
)
. (2.3)

The system (2.3) fully describes the fate of the eigenvalues when the parameterλ, a fictitious
time, is changed. It takes a bit of ingenuity (see [2–4] for hints) to see that the system
(2.3) is a Hamiltonian one. Indeed, when we define the following Poisson brackets for the
phase-space variablesqn, pn, andlmn as

{pm, qn} = δmn {pm, pn} = 0= {qm, qn}
{lmn, pi} = 0= {lmn, qi}
{lmn, lij } = 1

2(δmj lni + δni lmj − δnj lmi − δmilnj ) (2.4)

the dynamical equations (2.3) turn out to be the Hamilton equations

q̇n = {H, qn} ṗn = {H, pn} l̇mn = {H, lmn} (2.5)

with the Hamilton function

H(q, p, l) = 1

2

∑
n

p2
n +

1

2

∑
n6=m

l2mn

(qm − qn)2 . (2.6)

One may consider the equations (2.3) or (2.5) as describing the time evolution of a
one-dimensional gas of particles, with positionsqn and canonically conjugate momentapn,
experiencing repulsive two-body interactions. A non-conventional feature of this fictitious
gas is that the coupling strengthslmn also undergo temporal changes according to the third
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equation of (2.3). It must be noted that the gas in question must expand indefinitely, due
to the interparticle repulsion and the lack of confining forces. Such expansion is in fact
obvious from the parametric motion (2.1) of the matrixX(λ) = X0 + λY0: for Y generic,
the eigenvalues ofX(λ) behave roughly likeλ times the eigenvalues ofY0, and thus fly
apart indefinitely asλ→∞.

Not subject to such explosion are the levels of the real symmetric matrix

X(λ) = X0 cosλ+ Y0 sinλ. (2.7)

By analogy to the foregoing, this yields level dynamics with unchanged Poisson brackets,
but the Hamilton function

H(q, p, l) = 1

2

∑
n

p2
n +

1

2

∑
n

q2
n +

1

2

∑
n6=m

l2mn

(qm − qn)2 (2.8)

differs from (2.6) by an added harmonic confining potential. The change from the unbound
parametric matrix motion (2.1) to the bounded one (2.7) can be understood as a non-
canonical transformation of the fictitious-particle dynamics involving aλ-dependent re-
scaling of the coordinates, as well as a nonlinear re-parametrization of the timeλ [4, 8].

The fictitious gas with the binding Hamilton function (2.8) offers a convenient starting
point for a statistical theory of the spectra of real symmetric matricesX. The energy
surfaceH = constant is compact and yields a normalizable canonical phase-space density
ρ = exp(−H). By integratingρ over the variablespn and lmn, we obtain a density of the
fictitious-particle coordinates, i.e. a joint density of the eigenvalues ofX,

P(q1, q2, . . . , qn) ∼ exp

(
−
(

1

2

∑
n

q2
n

))∏
i<j

|qi − qj |. (2.9)

This is in fact the distribution known from the Gaussian orthogonal ensemble of random-
matrix theory [9], which appears here as a consequence of equilibrium statistical mechanics,
for an associated many-body system.

2.2. Hamiltonian matrix dynamics

We shall now re-derive the Hamiltonian form of level dynamics for real symmetric matrices,
using a different method which lends itself more easily to generalizations. The method
employs a certain symmetry inherent in the equation (2.1), or rather in its differential form

Ẋ = Y Ẏ = 0. (2.10)

It is known from elementary analytical mechanics that symmetries of dynamical equations
provide constants of the motion. For instance, rotational symmetry, as in a central-force
problem, entails the conservation of angular momentum. Such constants of the motion
enable us to reduce the number of degrees of freedom while preserving the Hamiltonian
nature of the reduced system. In the case of a particle experiencing a central force, we can
eliminate the angular degrees of freedom and reduce the Hamilton function to one depending
only on the radial variable. In the case in hand, (2.10), the symmetry is an invariance under
orthogonal transformations of the matricesX andY .

The system of differential equations (2.10) looks like free motion in the space of pairs of
real symmetric matrices(X, Y ). It is therefore suggestive to assemble the matrix elements
of the matricesX andY into canonically conjugate pairs(Xij , Yij ) with i 6 j of ‘positions’
Xij and ‘momenta’Yij , and to define the Poisson brackets

{Yii, Xkk} = δik {Yij , Xkl} = 1
2δikδjl for i < j, k < l

{Yij , Ykl} = 0= {Xij ,Xkl}. (2.11)
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As is easily checked we thus reproduce the free motion (2.10) as the Hamilton equations

Ẋij = {H, Xij } Ẏij = {H, Yij } i, j = 1, . . . , N (2.12)

with the Hamilton function

H = 1

2

∑
i

Y 2
ii +

∑
i<j

Y 2
ij =

1

2
trY 2. (2.13)

To proceed, we need a slightly more abstract formulation of Hamiltonian mechanics.
We furnish the phase spaceM (in the present example the differentiable manifold spanned
by pairs of real symmetric matrices(X, Y )), with a differential 2-formω which in our case
reads

ω =
∑
i

dYii ∧ dXii + 2
∑
i<j

dYij ∧ dXij = tr(dY ∧ dX). (2.14)

As in the second member of the foregoing equation, we usually omit the indicesij on X
andY and indicate summations as the trace operation; in employing this shorthand we must
always keep in mind that only theXij , Yij with i 6 j are our independent variables, and
identify Xij = Xji .

In all cases to be considered, the symplectic 2-formω will be the exterior derivative,
ω = dα, of some 1-formα, the so-called symplectic potential; in the present example this
potential reads

α = tr(Y dX). (2.15)

The symplectic formω can be used to define the Poisson brackets in a way which makes
coordinate changes onM easy to implement. It is also convenient to use trace notation for
a vector fieldZ with coefficientsZX andZY

Z = tr

(
ZX

∂

∂X
+ ZY ∂

∂Y

)
. (2.16)

The 1-form dF associated with a smooth functionF(X, Y ) onM

dF = tr

(
∂F
∂X

dX + ∂F
∂Y

dY

)
(2.17)

entails the following change ofF alongZ

dF(Z) = tr

(
ZX

∂F
∂X
+ ZY ∂F

∂Y

)
. (2.18)

If G is another smooth function onM, and dG its differential, we construct a 2-form
as dF ∧ dG. Acting with the latter on a pair of vector fieldsX andZ, one obtains the
function

(dF ∧ dG)(X ,Z) := dF(X ) dG(Z)− dF(Z) dG(X ) (2.19)

which is obviously antisymmetric in the functions dF(X ), dG(Z) defined in (2.18). If
a pair of vector fields is to be acted upon by a linear combination of 2-forms such as∑

µ,ν AµνdFµ ∧ dGν with smoothAµν,Fµ, and Gν , then both sides of (2.19) must be
correspondingly linearly combined.

The ‘Hamiltonian vector field’XF of the smooth functionF is defined by requiring
that the action of the symplectic 2-formω on the pair of vector fieldsXF andZ (with Z
arbitrary) as (2.19) gives the negative change ofF alongZ

ω(XF ,Z) = −dF(Z). (2.20)
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Upon invoking the symplectic 2-formω from (2.14) we find, from the foregoing definitions
(2.18)–(2.20), the explicit expression

XF = tr

(
∂F
∂Y

∂

∂X
− ∂F
∂X

∂

∂Y

)
. (2.21)

We are now fully equipped to define the Poisson bracket{F ,G} of two functions by
letting the pair of associated Hamiltonian vector fields be acted upon by the symplectic
2-form

{F ,G} = ω(XF ,XG). (2.22)

It is easy to check that this definition returns to the original Poisson brackets (2.11) when
we employ the particular symplectic 2-form (2.14). We should note, however, that (2.20)
and (2.22) make no explicit recourse to specific coordinates onM; and that this is why
the slightly abstract formulation of Hamiltonian mechanics as a symplectic structure onM

makes changes of coordinates easy to implement.
One can now observe that the symplectic formω (2.14) (and hence also the Poisson

brackets (2.11)) as well as the Hamilton functionH (2.13) are invariant under orthogonal
transformations

(X, Y ) −→ (OXO−1,OYO−1) OOT = I (2.23)

where the superscript T denotes matrix transposition. This symmetry under the groupO(N)

comes with a constant of the motion

µ(X, Y ) = [Y,X]. (2.24)

The conservation of the commutator is easily checked, [Y,X] = [Y0, X0+ λY0] = [Y0, X0].
The relation of the conservation law to the symmetry (2.23) follows from Noether’s theorem:
let ξ be a real antisymmetric matrix andε a small number; an orthogonal matrixO close
to the unit matrix can then be written asO = exp(εξ). For a Hamilton function to be
invariant under such a transformation it must satisfy

tr

(
∂H
∂X

[ξ,X] + ∂H
∂Y

[ξ, Y ]

)
= 0 (2.25)

sinceδX = ε[ξ,X] and δY = ε[ξ, Y ] are the infinitesimal changes brought about by the
transformationO in question. A generating functionG producing such coordinate changes
asδX = ε(∂G/∂Y ), δY = −ε(∂G/∂X) is easily found by integrating as

G = tr ξ [Y,X]. (2.26)

The invariance ofH under the infinitesimal transformationO thus implies{H,G} = 0
and this in turn means thatG is invariant under the canonical transformations generated
by the Hamilton functionH, i.e. thatG is conserved. Now, sinceξ is an arbitrary real
antisymmetric matrix we may choose it such that only two elements are non-vanishing,
ξij = δikδjl , and thus findG asµkl = [Y,X]kl ; but this reasoning holds for all pairs of
indices(kl) and therefore the whole matrixµ is conserved due to theO(N)-invariance of
our canonical structure.

We now propose to exploit theO(N)-invariance to change coordinates onM, so as to
obtain the eigenvalues of the matrixX among the new coordinates. To this end we choose
the particular orthogonal transformation (2.23) which diagonalizesX

O−1XO = diag(q1, q2, . . . , qN) =:Q. (2.27)
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Obviously the matrixO is not uniquely determined by the matrixX. Nevertheless, we can
always choose one matrix for eachX such that the following construction of coordinates is
correct.

We subject the matricesY and µ to that same transformation and call the resulting
matrices

P := O−1YO l := O−1µO. (2.28)

Needless to say, the so-adoptedO depends onX such that we are now dealing with a
nonlinear change of coordinates. Another consequence of theX-dependence ofO is that
the transforml of µ is not conserved.

In view of our goal, to rewrite our Hamiltonian dynamics (2.10) alias (2.12) in new
coordinates we consider the differential ofX. With the help of the 1-form

W := O−1 dO = −WT (2.29)

we get

dX = d(OQO−1) = O(dQ+ [W,Q])O−1. (2.30)

We also need the differential dW

dW = d(O−1 dO) = −O−1 dOO−1 ∧ dO = −W ∧W. (2.31)

We can now express our symplectic potentialα in the new coordinates

α = tr(Y dX) = tr(P (dQ+ [W,Q])) = tr(P dQ)− tr(lW). (2.32)

As its differential we have the symplectic 2-form

ω = dα = tr(dP ∧ dQ)− tr(dl ∧W)+ tr(lW ∧W)
=
∑
i

dpi ∧ dqi + 2
∑
i<j

dlij ∧Wij

−2
∑
i<j<k

(lijWjk ∧Wik + likWij ∧Wjk + ljkWik ∧Wij ) (2.33)

wherepi with i = 1, . . . , N are the diagonal elements of the matrixP , and lij are the
elements of the antisymmetric matrixl.

As new coordinates onM we now chooseN functionsqi , N functionspi , N(N −
1)/2 elements of the antisymmetric matrixl, andN(N − 1)/2 independent coordinates
parametrizing the orthogonal matrixO. A short calculation expresses the Hamilton function

H = 1
2tr Y 2 = 1

2trO−1Y 2O (2.34)

in terms of the new coordinates. Not surprisingly, we find exactly the Hamilton function
of level dynamics (2.6). Moreover, upon using (2.20), (2.22), and (2.33) we derive the
Poisson brackets in the new variables and recover those previously given in (2.4). We
could proceed to calculate the Poisson brackets involving the remaining new phase-space
variables, i.e. those characterizing the orthogonal matrixO. However, we refrain from
doing this, because the Poisson brackets (2.4) for thepi, qi, lij close among themselves,
and the Hamilton function does not involve these additional variables either. We can now
enjoy an important benefit of the orthogonal symmetry of our matrix dynamics, i.e. the
possibility of reducing the number of degrees of freedom, while preserving the Hamiltonian
character.

The foregoing considerations carry over immediately to real symmetric matrices of the
form (2.7), i.e.X = X0 cosλ+Y0 sinλ. Instead of the matrix dynamics (2.10) we now have

Ẋ = Y Ẏ = −X. (2.35)
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This is Hamiltonian in character with the Poisson brackets (2.11) but with the Hamilton
function (2.13) replaced by

H =
∑
i

(X2
ii + Y 2

ii )+
1

2

∑
i<j

(X2
ij + Y 2

ij ) =
1

2
tr(X2+ Y 2). (2.36)

Again there is symmetry under orthogonal transformations. Simply repeating the above
analysis and by changing coordinates, we project the motion onto the smaller manifold
spanned by theq, p, l and there recover Hamiltonian dynamics according to the fictitious
gas Hamilton function (2.8), which includes a harmonic binding potential.

3. Level dynamics for Hermitian and unitary matrices

When extending the above arguments for Hamiltonian matrix dynamics to Hermitian
N × N matrices or quaternion real 2N × 2N matrices of the structureX = X0 + λY0

or X = X0 cosλ + Y0 sinλ, we encounter few changes. Noteworthy is the replacement of
the orthogonal symmetryO(N), by the unitary oneU(N) and the symplectic oneSp(N),
respectively. Consequently, the Poisson algebras of thelij are related to the corresponding
Lie algebrasu(N) and sp(N) rather than to the algebrao(N) incurred in the previous
section. Moreover, the matrix dynamics with binding potentials naturally lead to the joint
distribution of eigenvalues of the Gaussian unitary and symplectic ensembles of random-
matrix theory [9, 4].

Even the level dynamics of unitary Floquet matrices of periodically kicked quantum
systems (see [4]) can be cast into the form of Hamiltonian matrix dynamics. Such Floquet
matrices have the structure

F = exp(−iλV )F0 (3.1)

with V Hermitian andF0 unitary, both of dimensionN , andλ once more a real control
parameter. Of interest is the fate of the eigenphases upon varyingλ.

In order to reveal theλ-dependence of Floquet matrices of the form (3.1) as a
Hamiltonian flow we introduce a phase spaceM, spanned by pairs ofN × N matrices
(F, V ) with F unitary andV Hermitian, or, equivalently, by pairs(X, Y ) defined as

X = F Y = iF−1V. (3.2)

For systems which enjoy a time reversal symmetryT , i.e.T FT −1 = F † with an anti-unitary
T , the Floquet matrix (3.1) is symmetric (F = F T), in the T -invariant basis and can be
diagonalized by an orthogonal matrixO [4]. In this case we define the symplectic structure
using the real form

ω = tr(dY ∧ dX) (3.3)

and this together with the Hamilton function

H = − 1
2tr(XY)2 (3.4)

leads to the dynamical equations

Ẋ = −XYX Ẏ = YXY. (3.5)

These Hamiltonian equations obey the conservation law,XY = constant= X0Y0, and hence
the solution

X = exp(−λX0Y0)X0. (3.6)
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The latter is indeed, according to (3.2), the original unitary matrixF(λ) in (3.1). Proceeding
from here on as above, and exploiting the invariance of the Hamiltonian matrix dynamics,
under orthogonal transformations we reduce the dynamics to the sub-manifold ofM spanned
by the fewer variablesqn, pn and lmn, which in the case of the orthogonal symmetry class
obey the Poisson algebra (2.4) (whenU(N) or Sp(N) is the reigning symmetry group we
must modify the symplectic structure accordingly and then the Poisson brackets of thelmn
come out as related to the corresponding Lie algebrasu(N) or sp(N)). The newqn are the
eigenphases of the Floquet matrixF , while the canonically conjugate momentapn are the
diagonal elements of the matrix

v = OTVO. (3.7)

This is the original Hermitian matrixV rotated by the matrixO which diagonalizesF as

OTFO = exp(−iQ) Q = diag(q1, q2, . . . , qN) (3.8)

and the real antisymmetric matrixl is given by

l = i(exp(iQ)v exp(−iQ)− v). (3.9)

The Hamilton function (3.4) written in the coordinatesqn, pn, andlmn reads

H(q, p, l) = 1

2

∑
n

p2
n +

1

8

∑
n,m;n6=m

l2mn

sin2((qm − qn)/2)
. (3.10)

This leads to dynamical equations analogous to (2.3)
dqn
dλ
= pn

dpn
dλ
= −1

4

∑
k 6=n

lnklkn
cos((qn − qk)/2)
sin3((qn − qk)/2)

dlmn
dλ
= −1

4

∑
k 6=m,n

lmklkn

(
1

sin2((qm − qk)/2)
− 1

sin2((qn − qk)/2)

)
. (3.11)

These Hamiltonian equations have previously been derived [4] by the more elementary
method outlined in section 2.1. They obviously allow for an interpretation as the dynamics
of a fictitiousN -particle system. The equilibrium statistical mechanics of that many-body
system has been shown to entail the statistics of the eigenphasesqn well known from
Dyson’s circular ensembles of random-matrix theory [4, 10, 11].

The special cases of constantlmn in the Hamilton functions (2.6) and (3.10) give rise to
the known Calogero–Moser and Sutherland–Moser systems [19–21]. It is interesting that
the quantumversions of these Hamiltonians can also be associated with universal statistical
spectral properties of quantum chaotic systems. It was shown by Simonset al [22] how
quantum Calogero and Sutherland Hamiltonians appear in limiting (N → ∞) versions of
certain field-theoretical matrix models, which, on the other hand, lead to random matrix
theory via the so-called nonlinear, supersymmetricσ -model [23, 24].

4. Level dynamics of complex matrices

4.1. Parametric motion of complex matrices as a real Hamiltonian flow

We now extend the techniques explained above to parametric motion in the space of complex
matrices. Admitting complexN×N matrices,X andY and a real parameterλ, we consider
the motion

X(λ) = X0+ λY (4.1)
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as a flow on the 2N2-dimensional complex phase spaceM, parametrized by pairs of matrices
(X, Y ). Alternatively and equivalently, the flow (4.1) can be written as a real one: instead
of pairs of complex matrices(X, Y ), we may choose quadruples of real ones, through
X = X(1) + iX(2), Y = Y (1) + iY (2) with X(a), Y (a), a = 1, 2; the phase space is then a
4N2-dimensional real manifold.

To reveal the Hamiltonian nature of the motion we introduce ‘natural’ Poisson brackets

{Y (a)ij , X
(b)
kl } = δabδikδjl {Y (a)ij , Y

(b)
kl } = {X(a)ij , X(b)kl } = 0 (4.2)

and a real positive Hamilton function

H = 1

2
trYY † = 1

2

N∑
i,j

(Y
(1)
ij )

2+
N∑
i,j

(Y
(2)
ij )

2. (4.3)

The Hamilton equations read

Ẋ
(a)
ij = {H, X(a)ij } = Y (a)ij Ẏ

(a)
ij = {H, Y (a)ij } = 0. (4.4)

Combining these to the complex equationsẊ = Y, Ẏ = 0 and integrating, we indeed
recover the original flow (4.1). Needless to say, we could have stayed with complex
matrices throughout and employed their Poisson brackets

{Yij , X∗kl} = 2δikδjl {Yij , Xkl} = {Yij , Ykl} = {Yij , Y ∗kl} = {Xij ,Xkl} = {Xij ,X∗kl} = 0.

(4.5)

From here on, we shall most often use the more compact formulation in terms of complex
matrices.

In preparation of the envisaged change of coordinates, we equip the phase spaceM of
pairs of complex matrices with the symplectic forms

α = Re tr(Y dX†) ω = dα = Re tr(dY ∧ dX†) (4.6)

or, in terms of real matrices,

α =
∑
i,j

Y
(1)
ij dX(1)ij +

∑
i,j

Y
(2)
ij dX(2)ij ω =

∑
i,j

dY (1)ij ∧ dX(1)ij +
∑
i,j

dY (2)ij ∧ dX(2)ij .

(4.7)

We can now introduce Poisson brackets without reference to specific phase-space
coordinates via the standard procedure. Let us recall from section 2 that one employs
an arbitrary vector fieldZ, on M, and associates a Hamiltonian vector fieldXF , with an
arbitrary smooth functionF , throughω(XF ,Z) = −dF(Z). The Poisson bracket of two
functionsF andG is then defined as{F ,G} = ω(XF ,XG). These, of course, imply the
above brackets (4.2) or (4.5), by means of a straightforward calculation.

4.2. Invariance under the unitary group

The symplectic structure just introduced is symmetric under the following action of the
unitary groupU(N)

(X, Y ) −→ (UXU−1, UYU−1) UU † = I. (4.8)

This invariance is indeed easy to check for the symplectic formω and the Hamilton function
(4.3); the invariance of the Poisson brackets (4.2) or (4.5) follows from that ofω. As in
the previous section, we find the constants of the motion

µ(X, Y ) := 1
2([Y,X

†] + [Y †, X]) (4.9)
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to be related to the symmetry in question through Noether’s theorem. Moreover, we can
exploit the invariance underU(N) to introduce new coordinates onM so as to include the
eigenvalues of the matrixX as a subset and thus exhibit level dynamics.

4.3. ‘Rotating-frame’ coordinates

It is not possible to diagonalize an arbitrary complex matrixX with the help of a unitary
transformation. Fortunately, we need not diagonalizeX(λ) to explore its eigenvalues. It
suffices to bringX(λ) into upper-triangular form and that can indeed be achieved (see [25])
by a unitary transformation

Z := U †XU Zij = 0 for i > j (4.10)

the diagonal elementsZii are the eigenvalues ofX. The same transformation performed on
the matricesY andµ

P := U †YU l := U †µ(X, Y )U = 1
2([P,Z

†] + [P †, Z]) (4.11)

yields (in general, full) complex matricesP and l.
Just as in the previous examples,X = UZU−1 is not a unique parametrization of the

matrixX. If U transformsX to the upper-triangular form (4.10) with the eigenvalues ofX

on the diagonal of the matrixZ, thenUT with T , an arbitrary diagonal unitary matrix, does
the same. We may thus imposeN suitable constraints onU so as to be left withN2 − N
independent real parameters inU . For instance, we could writeU = exp[i

∑
a xaTa] with

the sum running over all non-diagonalU(N) generatorsTa. The realN2 − N coefficients
xa would be the coordinates uniquely specifying our triangularizing matrixU .

We now consider the differential ofX,

dX = d(UZU †) = U(dZ + [W,Z])U †. (4.12)

Here,W is the 1-form

W := U † dU = −W †. (4.13)

From (4.13), and the unitarity ofU , we obtain

dW = d(U †dU) = −U † dUU † ∧ dU = −W ∧W. (4.14)

Hence, our symplectic potentialα and the symplectic formω can be written in the ‘rotating
coordinate frame’ as

α = Re tr(Y dX†) = Re tr(P (dZ† + [Z†,W †])) = Re tr(P dZ†)− tr(lW)

ω = dα = Re tr(dP ∧ dZ†)− tr(dl ∧W)+ tr(lW ∧W). (4.15)

To replace the parametrization of the manifoldM by pairs of complex matricesX, Y we
now specify new coordinates: the triangular matrixZ, the upper-triangular part ofP , i.e.
the set of elementsPij with i 6 j , the off-diagonal elements of the (anti-Hermitian) matrix
l and the unitary matrixU . We thus haveN(N + 1) real variables ReZij , ImZij with
i 6 j , N(N + 1) real variables RePij , ImPij with i 6 j , N(N − 1) real variables Relij ,
Im lij , with i < j (remember thatlij = −l∗ji) andN(N −1) real variables parametrizing the
triangularizing matrixU . As in the original frame we encounter 4N2 real variables. The
transformation to rotating coordinates is generically non-singular. To fully implement it, we
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must eliminate the variablesPij with i > j in favour of the variableslij with the help of
the definition in (4.11). Writing outlmn for m < n and usingZij = 0 for i > j , we obtain

2lmn =
∑
k>n

PmkZ
∗
nk −

∑
k6m

Z∗kmPkn +
∑
k6n

P ∗kmZkn −
∑
k>m

ZmkP
∗
nk

=
∑
k>n

Z∗nkPmk −
∑
k6m

Z∗kmPkn +
∑
k6m

ZknP
∗
km −

∑
k>n

ZmkP
∗
nk

+
∑
n>k>m

ZknP
∗
km −

∑
n>k>m

ZmkP
∗
nk. (4.16)

We may solve these equations forP ∗mn with m > n and thus obtain the elements of the
lower-triangular part ofP as linear combinations of thelij with i < j and thePij with
i 6 j .

We shall need the JacobianJ (or rather the dependence of its absolute value onZij ) of
the transformation from the variables (RePmn, ImPmn, m > n) to the variables (Relmn,
Im lmn, m 6= n), or, what is equivalent up to a constant, of the transformation from
(Pmn, P

∗
mn,m > n) to (lmn, l∗mn,m > n). To constructJ we deduce from (4.16) form < n

2lmn =
∑
n>k>m

ZknP
∗
km −

∑
n>k>m

ZmkP
∗
nk + · · ·

= (Znn − Zmm)P ∗nm +
∑
n>k>m

(ZknP
∗
km − ZmkP ∗nk)+ · · · (4.17)

where the dots refer to terms independent ofPij , P ∗ij with i > j and thus incapable of
contributing to the Jacobian. Obviously, then, thelmn with m < n do not depend on the
Pij with i > j but only on their conjugatesP ∗ij ; hence the absolute value of the Jacobian
J equals the squared modulus of the JacobianJ1 of the transformation (4.17). Now, for
n = m + 1, we have only one term on the right-hand side of (4.17) which contributes the
factor (Zm+1,m+1−Zmm) to J1. We can expandJ1 with respect to the rows containing only
one element of this form. In the reduced determinant there are once more rows containing
only one element corresponding ton = m+ 2; thus by continuing this procedure we arrive
at J1 =

∏
i<j (Zjj − Zii) and consequently

J =
∏
i<j

|Zjj − Zii |2. (4.18)

It is worth noting that the JacobianJ depends only on the diagonal elementsZii , i.e. the
eigenvalues ofX (and their complex conjugates).

With the help of the symplectic form (4.15) we can calculate the Poisson brackets for
the new coordinates. To this end we first introduce the latter inω as

ω = 1

2

∑
i6j

(
dPij ∧ dZ∗ij + dP ∗ij ∧ dZij

)+ tr(dl ∧W)− tr(lW ∧W). (4.19)

Mere inspection reveals the Poisson bracket betweenZ andP to be canonical,

{Pij , Z∗kl} = 2δikδjl {Pij , Zkl} = {Zij , Z∗kl} = {Pij , P ∗kl} = 0 (4.20)

and the Poisson brackets ofPij andZij with lkl andUkl to vanish. Moreover, the Poisson
brackets for thelij do not depend on theUkl , in analogy to the situation encountered in
section 2.2. Indeed, letF , G be two functions depending on the components ofl only
andXF , XG the corresponding Hamiltonian vector fields calculated according to (2.20). A
straightforward calculation (see the appendix) shows that

F ,G} = ω(XF ,XG) = −tr

(
l

[(
∂F
∂l

)T

,

(
∂G
∂l

)T ])
(4.21)
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where∂F/∂l is the matrix with the elements∂F/∂lij etc. In particular, for thelij themselves
we obtain the brackets related to the Lie algebra,u(N)

{lpq, lmn} = lpnδmq − lmqδpn. (4.22)

In order to express the Hamilton function (4.3) in the new coordinates we start from

H(Z, P ′, l′) = 1

2
tr(PP †) = 1

2

{∑
i6j
|Pij |2+

∑
i>j

|Pij |2
}

(4.23)

and here think of thePij with i > j as expressed in terms of theZij , the off-diagonal
elements ofl and the upper-triangular part ofP (which are denoted byl′ and P ′,
respectively). Together with the Poisson brackets (4.20) and (4.22), this Hamilton function
yields the equations of motion for the variablesZ,P ′ and l′. SinceH does not depend
on U , it is obvious that the latter variables obey a closed system of dynamical equations.
Similar to our procedure in section 2, we have thus achieved the desired projection of the
original matrix dynamics onto a Hamiltonian system of smaller dimension, such that the
levels of the complex matrixX(λ) span a part of the reduced manifold.

The reduced Hamiltonian dynamics arrived at, generalizes the previously known level
dynamics to that of complex matrices. It may be looked upon as the dynamics of a ‘gas’
of fictitious particles moving in two spatial dimensions and we shall, in fact, dwell on
that analogy below. Like the one-dimensional fictitious gases associated with Hermitian
and unitary matrices in sections 1 and 2 the many-body system now encountered is an
integrable one. The integrability is a trivial consequence of that of the original matrix
flow (4.1). Needless to say, if we restrict the matricesX, Y in (4.1) to real symmetric
ones, the new many-body system reduces to the corresponding one of section 2: the upper-
triangular matrixZ becomes diagonal, the matrixP real symmetric, and the matrixl real
antisymmetric with (4.17) specialized to the formlmn = Pmn(Znn − Zmm), familiar from
section 2, apart from its notation.

4.4. Re-scaled levels and Ginibre’s ensemble

The eigenvaluesZii of the complex matrixX = X0+λY tend to move apart indefinitely in
the complex plane as the real parameterλ keeps growing. We therefore shift our attention
to a matrix dynamics with bounded motion of the eigenvalues and return to (2.7) and (2.35)

Ẋ = Y Ẏ = −X ⇔ X = X0 cosλ+ Y0 sinλ (4.24)

but now with complexN × N matrices. That matrix flow is generated by the Hamilton
function

H = 1
2tr(XX†)+ 1

2tr(YY †) (4.25)

or, written in real variables,

H = 1

2

N∑
ij

(
X
(1)
ij

)2
+ 1

2

N∑
ij

(
X
(2)
ij

)2
+ 1

2

N∑
ij

(
Y
(1)
ij

)2
+ 1

2

N∑
ij

(
Y
(2)
ij

)2
. (4.26)

This differs from the original Hamilton function (4.3)) by the inclusion of a harmonic
binding potential. That potential preserves the unitary symmetry of the system and hence
all previous considerations remain valid. In the new coordinates the Hamilton function
(4.23) acquires a binding term as well and takes the form

H(Z, P ′, l′) = 1
2tr(ZZ†)+ 1

2tr(PP †). (4.27)
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Now that the motion of the eigenvalues in the complex plane is bounded in character,
we have reached, as in section 1 for real symmetric matrices, a good basis for a statistical
theory of spectra for complex matrices. Thinking of the level dynamics as the motion of
a many-body system and imagining that system in thermal equilibrium, we employ the
canonical phase-space density

ρ(Z, P ′, l′) ∼ exp(−H(Z, P ′, l′)

= exp

(
− 1

2

N∑
n

|Znn|2
)

exp

(
− 1

2

N∑
m,n;m<n

|Zmn|2
)

exp

(
−1

2
tr(PP †)

)
.

(4.28)

Since the manifoldH = constant is compact, this canonical density is normalizable. Of
course, we must, as previously, imagine the elements from the lower-triangular part ofP

expressed by appropriate elements ofl, Z and the upper-triangular part ofP . The reduced
distribution of the eigenvalues is obtained by integratingρ(Z, P ′, l′) over the variables
l′, P ′, andZij , i < j , i.e. all variables except the eigenvaluesZii

P ({Zii}) ∼
∫
ρ(Z, P ′, l′)

N∏
i<j

d2Zij d2Pij d2lij

N∏
i

d2Pii (4.29)

where d2x := dRex dImx. The integration over dZij , i < j , involves only Gaussian factors
stemming from trXX† in the exponential. The integrals over the remaining variables are
also reduced to Gaussian ones over exp(trPP †), if we change back from the variablesl′, P ′

to P . Taking into account the Jacobian (4.18) we obtain

P({Zii}) ∼ exp

(
−

N∑
i

|Zii |2
)∏
i<j

|Zii − Zjj |2 (4.30)

which is well known as the joint density of eigenvalues of Ginibre’s ensemble [14] of
random complex matrices.
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Appendix. Poisson brackets

We derive here the Poisson brackets (4.21), related to the symmetry groupU(N). A similar
calculation would yield the corresponding brackets in (2.4) for the groupO(N). In fact,
the construction is based on a general principle which follows from the equivariance of the
moment map and the existence of the canonical Poisson structure on the algebra in question.
The reader will appreciate the power of exterior differential forms as a bookkeeping device in
changes of coordinates on some manifold. To do this kind of calculation using conventional
calculus would be possible, in principle, but considerably more cumbersome.

The first step is to construct the Hamiltonian vector fieldXF associated with a
smooth functionF(l), which depends only on thelij and thus has the differential
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dF = tr(∂F/∂l) dlT. The change ofF , along an arbitrary vector fieldZ, therefore involves
only the componentsZ (l) of Z along thel and reads

dF(Z) = trZ (l)
(
∂F
∂l

)T

. (A.1)

We now recall the definition (2.20) of a Hamiltonian vector field,ω(XF ,Z) = −dF(Z),
and invoke the symplectic form (4.19). Since (i)ω(XF ,Z) is bilinear in the components of
XF andZ, (ii) dF(Z) involves only thel-componentsZ (l) of Z, and (iii) ω has no cross
terms between the dZij and the dlij nor between the dPij and the dlij , the Hamiltonian
vector fieldXF in search can neither haveZ- nor P -components; possible only arel- and
U -components. We thus get

ω(XF ,Z) = −tr (dl ∧ dW − lW ∧W)(XF ,Z)

= − tr (dl ∧ dW − lW ∧W)
(

trXF (l)
(
∂

∂l

)T

+trXF (U)
(
∂

∂U

)T

, trZ (l)
(
∂

∂l

)T

+ trZ (U)
(
∂

∂U

)T )
. (A.2)

Upon invoking the definition (2.19) of the action of a 2-form on a pair of vector fields we
proceed to

ω(XF ,Z) = −tr (XF (l)U † − lU †XF (U)U † + U †XF (U)lU †)Z (U) + trU †XF (U)Z (l)

= − dF(Z) = −trZ (l)
(
∂F
∂l

)T

. (A.3)

We compare here the coefficients ofZ (l) andZ (U) and obtain the desired vector field,

XF = −tr

([
l,

(
∂F
∂l

)T ](
∂

∂l

)T

+ U
(
∂F
∂l

)T (
∂

∂U

)T )
. (A.4)

The Poisson bracket between two functionsF(l) andG(l) is then accessible through the
general definition (2.22), i.e. by letting the symplectic formω act on the pair of associated
Hamiltonian vector fieldsXF andXG . We simply repeat the foregoing calculation withZ
replaced byXG and recover the result announced in (4.21)

{F ,G} = ω(XF ,XG) = −tr

(
l

[(
∂F
∂l

)T

,

(
∂G
∂l

)T ])
. (A.5)
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